Dual non-retriggerable monostable multivibrator with reset

74HC/HCT221

FEATURES

- Pulse width variance is typically less than $\pm 5\%$
- Pin-out identical to "123"
- · Overriding reset terminates output pulse
- nB inputs have hysteresis for improved noise immunity
- Output capability: standard (except for nR_{EXT}/C_{EXT})
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT221 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT221 are dual non-retriggerable monostable multivibrators. Each multivibrator features an active LOW-going edge input ($n\overline{A}$) and an active HIGH-going edge input (nB), either of which can be used as an enable input.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the nB inputs allow jitter-free triggering from inputs with slow transition rates, providing the circuit with excellent noise immunity.

Once triggered, the outputs (nQ, $n\overline{Q}$) are independent of further transitions of $n\overline{A}$ and nB inputs and are a function of the timing components. The output pulses can be terminated by the overriding active LOW reset inputs ($n\overline{R}_D$). Input pulses may be of any duration relative to the output pulse.

Pulse width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications pulse stability will only be limited by the accuracy of the external timing components.

The output pulse width is defined by the following relationship:

$$t_{W} = C_{EXT}R_{EXT}In_{2}$$
$$t_{W} = 0.7C_{EXT}R_{EXT}$$

Pin assignments for the "221" are identical to those of the "123" so that the "221" can be substituted for those products in systems not using the retrigger by merely changing the value of R_{EXT} and/or C_{EXT} .

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	TYPICAL		
	PARAMETER	CONDITIONS	нс	нст	UNIT	
	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V};$				
t _{PHL}	$n\overline{A}$, nB , $n\overline{R}_D$ to nQ , $n\overline{Q}$	$R_{EXT} = 5 \text{ k}\Omega; C_{EXT} = 0 \text{ pF}$	29	32	ns	
t _{PLH}	$n\overline{A}$, nB , $n\overline{R}_D$ to nQ , $n\overline{Q}$		35	36	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	90	96	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) + 0.33 \times C_{EXT} \times V_{CC}^2 \times f_o + D \times 28 \times V_{CC} \text{ where:}$$

f_i = input frequency in MHz; f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_{EXT} = timing capacitance in pF; C_L = output load capacitance in pF

V_{CC} = supply voltage in V; D = duty factor in %

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

Dual non-retriggerable monostable multivibrator with reset

74HC/HCT221

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard (except for nR_{EXT}/C_{EXT})

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
SYMBOL		74HC									WAVEFORMO	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min	typ	max.	min	max.	min.	max.		(',		
t _{PLH}	propagation delay (trigger) nA, nB to nQ		72 26 21	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PLH}	propagation delay (trigger) nR _D to nQ		80 29 23	245 49 42		305 61 52		370 74 63	ns	2.0 4.5 6.0	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PHL}	propagation delay (trigger) nĀ, nB to nQ		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PHL}	propagation delay (trigger) $n\overline{R}_D$ to $n\overline{Q}$		63 23 18	195 39 33		245 49 42		295 59 50	ns	2.0 4.5 6,0	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PLH}	propagation delay (reset) $n\overline{R}_D$ to $n\overline{Q}$		66 24 19	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.11	
t _{PLH}	propagation delay (reset) nR _D to nQ		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.11	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.10	
t _W	trigger pulse width nA = LOW	75 15 13	25 9 7		95 19 16		110 22 19		ns	2.0 4.5 6.0	Fig.7	
t _W	trigger pulse width nB = HIGH	90 18 15	30 11 9		115 23 20		135 27 23		ns	2.0 4.5 6.0	Fig.7	
t _W	trigger pulse width nRD = LOW	75 15 13	25 9 7		95 19 16		110 22 19		ns	2.0 4.5 6.0	Fig.8	
t _W	output pulse width $n\overline{Q} = LOW$ $nQ = HIGH$	630	700	770	602	798	595	805	μs	5.0	C_{EXT} = 100 nF; R_{EXT} = 10 k Ω ; Fig.10	

Dual non-retriggerable monostable multivibrator with reset

74HC/HCT221

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
				74H	UNIT	V _{CC}	WAVEFORMS				
		+25						-40 to +85		-40 to +125	
		min	typ	max.	min	max.	min.	max.		``	
t _W	output pulse width nQ or nQ		140		_		_		ns	2.0 4.5 6.0	C_{EXT} = 28 nF; R_{EXT} = 2 k Ω ; Fig.10
t _W	output pulse width nQ or nQ		1.5		_		_		μs	2.0 4.5 6.0	C_{EXT} = 1 nF; R_{EXT} = 2 k Ω ; Fig.10
t _W	output pulse width nQ or nQ		7		_		_		μs	2.0 4.5 6.0	C_{EXT} = 1 nF; R_{EXT} = 10 k Ω ; Fig.10
t _W	pulse width match between circuits in the package		± 2		_		_		%	4.5 to 5.5	$C_{EXT} = 1000 \text{ pF};$ $R_{EXT} = 10 \text{ k}\Omega$
t _{rem}	removal time nR _D to nA or nB	100 20 17	30 11 9		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.9
R _{EXT}	external timing resistor	10 2		1000 1000	_		_ _		kΩ	2.0 5.0	Fig.12 Fig.13
C _{EXT}	external timing capacitor	no lin	nits						pF	2.0 5.0	Fig.12 Fig.13